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a b s t r a c t

For detection of damage in structures, the damage locating vector (DLV) method is

adapted to account for the different types and variations of internal forces and capacities

along the length of each element by using the normalized cumulative energy instead of

the normalized cumulative stress. To filter out the actual damaged elements from the

warehouse structure comprising beam and column elements with constant and varied

cross-sectional areas, and truss elements is used to verify the enhancements to the DLV

method. With wireless sensors being integrated into damage detection systems,

practical issues need to be addressed in conjunction with the detection algorithm

employed. For cases where raw signals are transmitted, the intermittent loss of data

packets during transmission from the sensor nodes to the base station needs to be

addressed. An algorithm to patch the lost data is proposed and when integrated with the

DLV damage detection methodology, is experimentally shown to be feasible using a 3-D

modular truss structure.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

As the number of structures increases, and as these structures age, issues of health, performance, maintenance and
retrofitting become more prominent and pressing. Early detection of anomalies in structures through periodic or
continuous monitoring is critical against catastrophe or sudden failure. Since damage alters the behavior of a structure
under external loading, the change in behavior can be used to assess its ‘‘health’’ [1–4]. Non-destructive evaluation
methods are preferred and have attracted many investigations [5,6]. Existing non-destructive damage detection algorithms
are either over a global [7,8] or local domain [9–11] while the structural response used to assess its damage is either static
[12,13] or dynamic [14–17].

Amongst the global level methods, the damage locating vector (DLV) method [7] has high practical potential. It is
flexibility-based and involves the determination of a set of static load vectors, denoted as DLV, such that it creates zero
stresses in the damaged elements when applied onto the reference structure. The DLV vector is extracted from the
difference in structural flexibility matrices (formulated with respect to the sensor locations) between the reference and the
damaged states [7,18]. The feasibility of the method has been illustrated numerically [7] and experimentally [19] using
truss structures. To extend the applicability of the method, two enhancements are incorporated in this paper. Firstly, a
composite measure is introduced within the DLV framework; for example, in a frame structure, the moment, shear, axial
force, and their variations along each element length relative to element capacity should be jointly considered when
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assessing damage. Secondly, the DLV method identifies a set of potential damaged elements which usually contains both
the actual damaged and some undamaged elements. If the number of sensors available for use is limited, the set may
contain a sizable number of undamaged elements. An algorithm is proposed herein to sieve out the damaged elements.

Recently, wireless sensor technology has contributed to new developments in structural damage detection as there are
significant advantages over wired sensors [20]. Issues related to adaptation and practical implementation of wireless
sensor systems, such as power supply, network management, cross-talk, data integrity and transmission speed are being
studied. The research and implementation of the DLV methodology have to take into account the possible use of wireless
sensors and their associated practical issues. Though the data captured on board by the wireless sensors has been digitized,
transmitting data packets from various sensor nodes to the base station using radio frequency (RF) commonly experiences
intermittent loss. The causes of data loss may be explained by (a) data packets from more than one sensor reach the base
station simultaneously; (b) distances between the sensor nodes and the base station are out of the communication range;
and (c) acknowledgement (ACK) messages of the lost packets are over-written. If the ACK messages indicating the lost
packet numbers are not received by the sensor node, the lost packets are not resent. The data loss phenomenon has been
experimentally examined by Nagayama [21] which reported that the loss percentage is random and can be as high as
86 percent. The loss percentage of 20 percent found in the experiment can pose a huge challenge in the application of WSN
for reliable structural damage detection [21]. Ongoing research has been carrying out to improve the hardware, software
and transmission topology to mitigate the loss of data [22–24]. One way is to have on-board storage to accumulate the data
and then Fourier transformed through a firmware before transmitting the amplitude, frequency and phase information to
the base station. However, this is not available commercially and minor problems still exist; hence, this innovation is not
considered in this paper. Instead, the numerical reconstruction of lost data in relation to structural damage identification
using the DLV method will be explored.

In summary, the three main features of this paper are: (a) the use of the normalized cumulative energy (NCE) for each
element as the parameter to identify damaged elements via the DLV method; (b) an intersection scheme to extract the set
of actual damaged elements from the set of potential damaged elements (PDE), especially when limited number of sensors
are used; and (c) an algorithm for data re-construction when wireless sensors are used in conjunction with the DLV method
for structural damage detection. The feasibility of these enhancements is verified numerically using simulated data from a
2-D warehouse frame example and experimentally using physically measured data from a 3-D modular truss structure.

2. Enhancement to the DLV method

2.1. Normalized cumulative energy

Consider a linear elastic structure with ns sensors attached. Let Fu and Fd denote the (ns�ns) flexibility matrices
constructed with respect to the ns sensor locations for the reference and the damaged structures, respectively. A (ns�1)
static load vector P (a0), which satisfies the work done equation

0:5PT
ðFdPÞ ¼ 0:5PT

ðFuPÞ or ðFd � FuÞP ¼ FDP ¼ 0 ð1Þ

can be derived by performing a singular value decomposition (SVD) on FD

FD�!
SVD

U � R � VT
¼ ½U1 U0�

R1 0

0 0

� �
½V1 V0�

T ð2Þ

This hinges on the orthonormal property of V, where post-multiplying Eq. (2) by V on both sides gives

½FDV1 FDV0� ¼ ½U1R1 0� ð3Þ

from which FDV0=0. Each column of V0 is a feasible solution to Eq. (1), and is by definition a DLV since the work done by this
force vector on the structural changes is zero. The columns of V0 constitute a set of DLVs, where the number of columns in
V0, denoted as ndlv, is less than ns. If column i of V0 is applied onto the reference structure, then the energy induced in
element j of the structure is given by

Xji ¼

Z
Lj

M2
ji

2EjIj
dsþ

Z
Lj

n
Q2

ji

2GjAj
dsþ

Z
Lj

N2
ji

2EjAj
ds ð4Þ

where for element j, Mji, Qji, Nji are its internal moment, shear and axial force, respectively, due to column i of the DLV; Lj its
length; v its Poisson’s ratio and EjIj, GjAj, EjAj its flexural, shear, and axial stiffness, respectively, in which Ej is its Young’s
modulus and Gj its shear modulus.

The NCE of element j is computed as

Xj ¼
Xj

Xmax
ð5Þ

where Xj ¼
Pndlv

i¼1 Xji and Xmax ¼maxall jðXjÞ. Physically, the NCE of element j is the normalized sum of internal work done
on element j by the system of forces defined by the DLVs. Although the maximum sum of internal work is chosen as the
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normalizing base (resulting in a maximum value of 1 for the element in the structure with the highest sum), an alternative
normalization base is the sum of the total internal work done by all elements. If the latter is used, then the NCE of element j

is physically the fraction contribution by this element to the total work done on the structure.
For truss structure, Eq. (4) becomes

Xji ¼

Z
Lj

N2
ji

2EjAj
ds ¼

N2
jiLj

2EjAj
¼ s2

ji

AjLj

2Ej
ð6Þ

where sji is the stress induced in element j by column i of V0. Based on Eq. (6),

sji ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xji �

2Ej

AjLj

s
ð7Þ

From Eqs. (5) and (7), it can be deduced that the NCS in the original DLV method proposed by Bernal [7] and the NCE are not
exactly the same. If the entire truss structure is composed of elements with the same moduli, lengths and cross-sectional
areas, NCE is equal to the square of NCS.

The set of PDE comprises those elements with Xj ¼ 0. In practice, due to the presence of noise and uncertainties, the NCE

of damaged elements may not exactly be zero and a non-zero threshold is needed for practical applications. Based on the
study by Sim et al. [25], if the value of 0.1 is used as the NCS threshold, then the probability of ‘‘false negative’’
(corresponding to the case when the damaged element is not within the set of identified PDE) is less than 5 percent
assuming that the Young’s moduli of all elements are statistically independent variables, each with a coefficient of
variation, dE, of 10 percent. The same basis is adopted in this paper and the square value of the NCS threshold value is
employed as NCE threshold. Based on the limited numerical and experimental examples performed by the authors, the
value of 0.01 has been proven to be robust so far.

The SVD performed using Eq. (2) is based on the flexibility matrix and the resulting DLVs have force as the physical
quantity. If the stiffness matrix is used instead, then the resulting DLVs obtained after performing SVD have displacement as
the physical quantity. Applying these DLVs onto the reference structure as nodal displacement vectors, the structural
internal forces can be computed. The NCE of each element is calculated following Eqs. (4) and (5) and used as the parameter
to assess damage.

2.2. Intersection scheme to identify actual damaged elements

In the DLV method, if limited number of sensors is used, the set of PDE identified would contain some undamaged
elements [7]. A scheme is formulated in this section to filter out the actual damaged elements by taking the intersection of
all potential sets derived using data from various combinations of sensors. The scheme is summarized in Fig. 1.

Starting with ns sensors, a set of PDE is first computed and denoted as the current intersected damage set (IDS). Next, by
using only data from ns-1 sensors, another set of PDE can be identified. By taking the common elements from this PDE and
the current IDS, a new IDS is obtained. This procedure can be repeated for a different set of ns-1 sensors (since there are ns

possible sets of ns-1 sensors) to get a new IDS. If the current and the new IDS are identical, the elements in the new IDS are
identified as the actual damaged elements and the identification process is considered as completed. The process is also
terminated if the new IDS is a null set, implying that there is no damaged element in the structure. If 2 consecutive IDS are
not identical and the combinations of ns-1 sensors are exhausted, then combinations of ns-2 sensors are next considered
until the criterion of 2 consecutive repeated IDS is met. The termination criterion can be increased to require a higher
number of consecutive identical IDS to ensure robustness of the method at the expense of computational cost. Based on
extensive study with different numerical examples, including data with added noise, it is found that the 2 identical
consecutive IDS criterion is robust.

The scheme works provided that ns is greater than 2 since at least 2 measurements are required to form a matrix before
any SVD can be performed to compute the DLV. With ns=2, only 1 set of PDE can be computed and no subsequent
combination of sensors is available to filter out the actual damaged elements.

2.3. Formulating structural stiffness matrix

To obtain the DLV, either structural flexibility or stiffness matrix with DOF at sensor locations must be available.
In the original DLV method, the flexibility matrix at sensor locations is formulated based on the eigensystem realization
algorithm (ERA) method [26–28] in conjunction with an algorithm to compute flexibility coefficients from state space
results [18] assuming that there is at least 1 collocated sensor-actuator pair. This requirement can be relaxed for the case
where adding a known mass to the structure is possible or the ‘‘mass’’ matrix does not change when the structure changes
from the reference to the damaged state [29,30]. In this section, a direct method is proposed to formulate the structural
stiffness matrix based solely on the measured accelerations at the sensor locations, assuming that the mass matrix is
known.

Consider an n-DOF structure with ns sensors attached. Assuming that r unknown input forces are acting on the
structure, nc (Z0) of which are collocated with the sensors. The locations of sensors and input forces are assumed known.
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Fig. 1. Flow chart for intersection scheme to identify actual damaged elements.
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The equation of motion of the structure can be expressed as

M €d þDd
_d þ Kd ¼ P ð8Þ

where M, Dd, and K are the (n�n) mass, damping and stiffness matrices, respectively; €d, _d and d the (n�1) acceleration,
velocity and displacement vectors, respectively; and P=B2u the (n�1) applied force vector in which B2 is the input
influence matrix to map the (r�1) input force vector u to the structural DOF.

If a sampling time interval of Dt is used, then the structural displacement and velocity responses at time step j can be
estimated using their values at step (j�1) through the Newmark-b method as

_dj ¼
_dj�1 þ ð1� gÞ � Dt � €dj�1 þ g � Dt � €dj

dj ¼ dj�1 þDt � _dj�1 þ ð0:5� bÞ �Dt2 � €dj�1 þ b � Dt2 � €dj

8<
: ð9Þ
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where g and b are the integration constants, taken as g ¼ 0:50, b ¼ 0:25 which correspond to the case of constant average
acceleration within Dt. Written in terms of the initial conditions d1 and _d1, and the accelerations (ns of which are measured
and n�ns of which are not measured and to be solved up to time step j), Eq. (9) becomes

_dj ¼
_d1 þ B1

Xj�1

i¼1

ð €d i þ
€d iþ1Þ

dj ¼ d1 þ ðj� 1Þ _d1Dt þ C1

Xj�1

i¼1

ð €d i þ
€d iþ1Þ þ B1Dt

Xj�1

i¼1

½ðj� i� 1Þð €di þ
€d iþ1Þ�

8>>>>><
>>>>>:

ð10Þ

where B1 ¼ 0:5Dt, C1 ¼ 0:25Dt2.
In theory, with k1 time steps of measured accelerations, k1n equations can be formulated using Eq. (8) as

M €d1 þDd
_d1 þ Kd1 ¼ P1

M €d2 þDd
_d2 þ Kd2 ¼ P2

. . . . . . . . . . . . . . . . . . . . . . . .

M €dk1
þDd

_dk1
þ Kdk1

¼ Pk1

8>>>><
>>>>:

ð11Þ

where subscripts 1;2; . . . ; k1 denote time steps. Substituting Eq. (10) into (11), the unknowns in Eq. (11) include: (i) 2n

initial conditions (d1 and _d1 for each of the n-DOF); (ii) k1(n�ns) accelerations which are not measured; (iii) n(n+1)/2
entries in each of Dd and K, both of which are symmetric matrices; and (iv) k1r unknown input forces. To solve for these
unknowns and hence obtain K, the number of time steps of acceleration data required is

k1nZnðnþ 1Þ þ k1ðn� nsÞ þ 2nþ k1r) k1Z
nðnþ 3Þ

ns� r
ð12Þ

It is observed from Eq. (12) that the number of time steps (k1) depends on the number of DOF of structure (n), the number
of excitation forces (r), and the number of sensors used (ns). Since Eq. (12) does not depend on the number of collocated
sensor-actuator pairs (nc), the method overcomes the requirement that at least 1 collocated sensor-actuator pair must exist
in the original DLV method.

Eq. (11) is a system of nonlinear equations which can be solved by either the Secant method [31] or the
Newton–Raphson method [32]. The unknowns are explicitly given in Eq. (11) and hence the Jacobian matrix can be
computed. The Newton–Raphson method is therefore employed using the parameters of the structure at the reference state
as initial guess for the unknowns in Dd and K to obtain the solution numerically.

For a feel of the number of time steps required, a structure with 10 DOF (n=10), excited by 2 actuators (r=2) and
monitored by 3 sensors (ns=3) gives k1Z130 whereas a structure with 50 DOF (n=50), excited by 2 actuators (r=2) and
monitored by 8 sensors (ns=8) necessitates k1Z442.

The above derivation assumes that (i) ns4r (or the number of unknown force time histories) and (ii) stiffness and
damping do not change within these k1 time steps. If nsrr or the locations of the applied loads are not known, this method
cannot be used. The smallest value for k1 is (n+3). For cases where ns is small and r is not much smaller than ns, k1 may be
extremely large to make the method impractical. If stiffness and damping change slowly (less than 0.1 percent within k1

time steps), then the values computed are averaged values otherwise the results may not represent the stiffness and
damping matrices of the damaged structure. If the measured time histories are long, then consecutive segments of k1 time
steps of data may be used and the changes of Dd and K with time segments can be monitored. In fact, how the damage
evolves with time may be captured, or if only the final state is of interest, the final K values can be used with the knowledge
of whether it has stabilized. It is possible to track how damping and stiffness matrices vary with time with better resolution
by using moving time segments at the expense of significantly larger computational effort.

The computation may be speeded up by considering equilibrium equations at DOF where there are no external
excitations. Using this approach, only portions of damping and stiffness matrices are estimated. The remaining portions of
damping and stiffness matrices and input forces are then computed using the above equations as a follow-on step. The
savings in computational time is not worth the added complexity in the procedure and hence is not presented here.

3. Reconstruction of lost data for wireless sensor

Wireless sensors may be integrated into the DLV damage detection methodology in line with the advancement in sensor
technology. Practical issues such as the loss of data during transmission of data packets from the sensor nodes to the base
station need to be addressed in conjunction with the detection algorithm employed. The algorithm to reconstruct lost data
presented below is performed individually for the signals of each sensor collected at the base station.

The idea behind the reconstruction procedure adopted here is that the complete signal (without loss) can be Fourier
transformed into various discrete frequencies. If the proportion of data that is lost is not significant, then reconstruction is
possible by making use of the available signal (says m points from a total of x points, that is, x-m points are lost which are
set to zeroes) to identify the significant frequencies (says nfreq number of significant frequencies, nfreqo0.5x). These
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frequencies together with Fourier coefficients Ak determined by least-square fit of the m measured values (requiring that
m4nfreq or m40.5x) are then used to reconstruct an approximated complete signal using the following equation:

xn ¼
1

x

Xnfreq

k¼1

Ak exp jn
2pðk� 1Þ

x

� �� �
ð13Þ

where j denotes the imaginary unit. The reconstructed signal now comprises measured values and lost values that have
been computed using Eq. (13). Performing Fourier transformed on the reconstructed signal, a new set of significant
frequencies which may not be the same as the previously identified significant frequencies is calculated. The latest set of
frequencies will then be used as before to obtain the Fourier coefficients based on least-square fit of the m measured data
points. A new signal can then be reconstructed and compared with the previously reconstructed signal. The relative
difference, Rerr, between 2 consecutive reconstructed lost portions of the signal is computed as

Rerr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPx�m
k¼1 ðg

i
k � gi�1

k Þ
2Px�m

k¼1 ðg
i
kÞ

2

vuut � 100 percent ð14Þ

where gi
k, gi�1

k are the estimated lost values at iterations i and (i�1), respectively. This procedure is iterated until Rerr is less
than 1 percent. The proposed data reconstruction algorithm is summarized in Fig. 2.

For determining whether a frequency is significant, a threshold of 1 percent for the ratio between its power spectral
values (PSV) and the maximum PSV in a signal is adopted. To estimate the error due to neglecting the insignificant
frequencies, a numerical study is performed on a signal with 1600 data points sampled at a rate of 1 kHz as shown in Fig. 3.
In theory, performing Fourier transformed on the signal, 800 frequencies and their corresponding Fourier coefficients can
be obtained. By using only the significant frequencies with their corresponding Fourier coefficients, a complete signal can
Fig. 2. Block diagram for lost data reconstruction algorithm.



ARTICLE IN PRESS

S.T. Quek et al. / Journal of Sound and Vibration 328 (2009) 411–427 417
be constructed using Eq. (13) and its relative error with respect to the actual signal estimated. If the threshold of 1 percent
is employed to demarcate the significant frequencies, 762 frequencies (see Fig. 4a) are identified and used to reconstruct
the signal, yielding a relative error of 0.9 percent (Fig. 4b). If a 5 percent relative error is considered acceptable, Fig. 4
indicates that a threshold of 20 percent to demarcate the significant frequencies is adequate. Note that this relative error is
the difference between the reconstructed and the exact complete signals and is different from that of Eq. (14) which is the
relative difference of lost portions between 2 consecutive reconstructed signals. Nevertheless, this gives a sense of the
minimum Rerr that can be imposed in the reconstruction procedure.

To study the reliability of the reconstruction methodology, the same signal of 1600 data points in Fig. 3 is used where
random portions of the data (multiples of 4 consecutive data points) are padded with zeroes to simulate the loss of data
packets during RF transmission from the sensor nodes to the base station. The reconstruction procedure is then performed
and the relative error plotted in Fig. 5. With threshold of 1 percent for both Rerr and the PSV to demarcate significant
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Fig. 3. Random signal with sampling rate of 1 kHz.
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frequencies, the minimum relative error for lost portions achievable is 5 percent. For data loss beyond 28 percent, the
relative error using this reconstruction procedure grows exponentially from 10 percent, beyond which it becomes
unattractive for practical applications. Hence, this reconstruction procedure is practical for approximately m40.7x, that is,
less than 30 percent of the data is lost. The same signal is used to obtain results for thresholds of 10, 2 and 0.5 percent for
both the significant frequencies and Rerr. The results in Fig. 5 show that the accuracy of the reconstructed signal is
improved significantly when the threshold is reduced from 10 to 2 percent, but only slightly when it is reduced from 2 to
0.5 percent. Thus, the proposed value of 1 percent appears adequate. To investigate the robustness of the Rerr threshold of 1
percent to terminate the iteration in Eq. (14), the reconstruction process is iterated for 10, 20 and 50 additional cycles after
the threshold of 1 percent is reached. Results in Fig. 6 testify that the relative differences between lost portions at iterations
i and (i+10), (i+20), (i+50) show little improvement with the additional cycles of computation, indicating that 1 percent is a
fairly optimal threshold.

If the raw signals where lost values are padded with zeroes for the lost data are employed to estimate the structural
stiffness matrix and then used in the DLV method, no DLV is computed. It may be explained by the large error in the
identified stiffness matrix induced by the poor quality of the measured signals. On the other hand, if the reconstructed
signals are employed, the damaged element is detected correctly as will be illustrated through an example in Section 4.2.
4. Numerical and experimental verification

The use of NCE as damage indicator and the intersection scheme to identify actual damaged elements is illustrated
numerically through a 2-D warehouse frame in Section 4.1. The algorithm for lost data reconstruction is verified using
experimentally measured data via a 3-D modular truss structure in Section 4.2.
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4.1. Numerical example of a warehouse frame structure

A 2-D warehouse frame shown in Fig. 7 is considered. The frame comprises (a) beams and columns with either constant
or varied cross-sectional areas; and (b) truss members. The specifications for the frame members are listed in Table 1.
Two cases of damage are investigated, namely element 14 is damaged, and elements (7, 14) are damaged. Damage is
simulated by imposing a reduction of 20 percent in flexural stiffness (EI) of column element 7 whereas for truss member
14, a 20 percent reduction in axial stiffness (EA) is imposed. The structure is excited horizontally by a zero-mean white
random load at node 9, and horizontal and vertical acceleration responses at nodes (4, 6, 8, 9, 10, 13) and (5, 7, 11, 12),
respectively, are monitored.

For the case where element 14 is damaged, from 10 monitored acceleration responses, the method in Section 2.3 is used
to formulate the structural stiffness matrix with respect to the sensor locations. Change in the stiffness matrix is then
computed by comparing the identified and the reference stiffness matrices. Performing SVD on the change in the stiffness
matrix, a set containing 9 DLVs is obtained. By applying these DLVs to the reference structural model as nodal displacement
vectors, the NCE of all elements are computed and the set of PDE which includes elements (14, 17) is identified. Therefore,
the current IDS contains elements (14, 17) and ne=2. By omitting data from readings of the sensor at node 4, the stiffness
matrix at the remaining 9 sensor locations is computed based on the remaining 9 sensor readings following the method in
Section 2.3. Comparing the identified and the reference stiffness matrices, the change in the stiffness matrix is computed.
By performing SVD on the change in the stiffness matrix, another set containing 8 DLVs is identified. By applying these DLVs
onto the reference structural model as nodal displacement vectors, the NCE of all elements are computed and the set of PDE
11
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Table 1
Specifications for members of warehouse structure.

Element numbers Height

(mm)

Width

(mm)

Flange

thickness

(mm)

Web

thickness

(mm)

Young’s

modulus

(1011 Nm�2)

Moment of

inertia

(10�8 m4)

Cross-sectional

area (10�4 m2)

1, 7 end 1 300 300 16 10 2.10 20,982 122.8

end 2 450 300 16 10 2.10 51,312 137.8

12, 18 end 1 450 300 16 10 2.10 51,312 137.8

end 2 600 300 16 10 2.10 97,145 152.8

4,15 300 300 16 10 2.10 20,982 122.8

19, 20, 21, 22 500 300 16 10 2.10 64,784 142.8

8, 9, 10, 11 300 300 16 10 2.10 20,982 122.8

2, 3, 5, 6, 13, 14, 16, 17 Tubular sections 2.10 4 2.0
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Table 2
Damage detection of warehouse (element 14 damaged).

Set of sensors includes sensors at nodes No. of DLV PDE Eliminated elements IDS ne

ns=10 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 9 [14, 17] [14, 17] 2

k=ns�1=9

i=1 [5, 6, 7, 8, 9, 10, 11, 12, 13] 8 [14] 17 [14] 1

i=2 [4, 5, 6, 7, 8, 9, 11, 12, 13] 8 [12, 14, 17] [14] 1

i=3 [4, 6, 7, 8, 9, 10, 11, 12, 13] 8 [4, 14] [14] 1

i=4 [4, 5, 7, 8, 9, 10, 11, 12, 13] 8 [1, 2, 7, 14, 20] [14] 1

i=5 [4, 5, 6, 8, 9, 10, 11, 12, 13] 8 [12, 14] [14] 1

i=6 [4, 5, 6, 7, 9, 10, 11, 12, 13] 8 [14, 16] [14] 1

i=7 [4, 5, 6, 7, 8, 10, 11, 12, 13] 8 [14] [14] 1

i=8 [4, 5, 6, 7, 8, 9, 10, 11, 12] 8 [12, 14, 16] [14] 1

i=9 [4, 5, 6, 7, 8, 9, 10, 12, 13] 8 [12, 14] [14] 1

i=10 [4, 5, 6, 7, 8, 9, 10, 11, 13] 8 [14, 17] [14] 1

Table 3
Damage detection of warehouse (elements 7 and 14 damaged).

Set of sensors includes sensors at nodes No. of DLV PDE Eliminated elements IDS ne

ns=10 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 9 [1, 4, 7, 13, 14] [1, 4, 7, 13, 14] 5

k=ns�1=9

i=1 [4, 5, 6, 7, 8, 9, 11, 12, 13] 8 [7, 12, 14] 1, 4, 13 [7,14] 2

i=2 [4, 5, 6, 7, 8, 10, 11, 12, 13] 8 [1, 7, 13, 14, 17] [7,14] 2
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which contains element 14 is identified. Intersecting the set of PDE and the current IDS which contains elements (14, 17)
produces element 14 as the new IDS (ne=1). Similarly, by omitting the readings of the sensor at node 10 instead of the
sensor at node 4, another set of PDE containing elements (12, 14, 16) is identified. Intersecting the identified PDE with the
current IDS which contains element 14 only gives element 14 as the new IDS (ne=1). Since the IDS is the same for
2 consecutive steps, the iteration is terminated and the actual damaged element 14 is identified correctly. The procedure is
summarized in the upper portion of Table 2. Similarly for the case where elements (7, 14) are damaged, the feasibility of the
method is confirmed by the results in Table 3.

To demonstrate that 2 consecutive identical IDS is adequate to stop the iteration described in Section 2.2, the remaining
8 combinations resulting from omitting 1 sensor readings at a time are considered and the identified PDE are listed in the
lower portion of Table 2 for the case where element 14 is damaged. The intersected damaged set IDS contains only element
14 for all cases, confirming the suitability of the proposed criterion. The same computation is performed for the case where
elements (7, 14) are damaged and yields the same conclusion although the results are not presented here.

To investigate the effect of noise on the performance of the proposed methodology, the above example is used and zero-
mean white noise with root mean square (RMS) of (i) 5 percent; and (ii) 10 percent of the RMS of the response signal is
added to all simulated response accelerations to generate contaminated responses. For the case of 5 percent noise, from the
contaminated responses of 10 sensors, the method in Section 2.3 is employed to calculate the structural stiffness matrix. By
comparing the identified and the reference stiffness matrices, the change in the stiffness matrix is computed. Applying SVD

on the change in stiffness matrix, a set containing 7 DLVs is computed. Applying these DLVs onto the reference structure
as nodal displacement vectors, the NCE of all elements are calculated and the first set of PDE which includes 6 elements
(4, 6, 12, 13, 14, 17) is identified. These 6 elements are assigned the current IDS (ne=6). By omitting readings of the sensor at
node 4 and employing the method in Section 2.3 on the remaining 9 sensor readings, the stiffness matrix with respect
to the remaining 9 sensor locations is computed. Comparing the identified and the reference stiffness matrices, the change
in the stiffness matrix is evaluated, based on which SVD is performed to identify another set containing 5 DLVs. Applying
these DLVs onto the reference structural model as nodal displacement vectors, the NCE of all elements are evaluated and the
set of PDE which includes elements (1, 8, 10, 14) is identified. Taking the intersection between the set of PDE and the current
IDS which contains elements (4, 6, 12, 13, 14, 17) gives element 14 as the new IDS (ne=1). Similarly, by omitting the readings
of the sensor at node 10 instead of the sensor at node 4 another set of PDE comprising elements (6, 14, 16) is identified. The
intersection of the set of PDE and the current IDS which contains element 14 only produces element 14 as the new IDS

(ne=1). Since the IDS for the 2 consecutive steps are identical, the iteration is stopped with the conclusion that element 14 is
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Table 4
Damage detection of warehouse with 5% noise added (element 14 damaged).

Set of sensors includes sensors at nodes No. of DLV PDE Eliminated elements IDS ne

ns=10 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 7 [4, 6, 12, 13, 14, 17] [4, 6, 12, 13, 14, 17] 6

k=ns�1=9

i=1 [5, 6, 7, 8, 9, 10, 11, 12, 13] 5 [1, 8, 10, 14] 4, 6, 12, 13, 17 [14] 1

i=2 [4, 5, 6, 7, 8, 9, 11, 12, 13] 5 [5, 14, 16] [14] 1

i=3 [4, 6, 7, 8, 9, 10, 11, 12, 13] 5 [14] [14] 1

i=4 [4, 5, 7, 8, 9, 10, 11, 12, 13] 5 [7, 14] [14] 1

i=5 [4, 5, 6, 8, 9, 10, 11, 12, 13] 5 [5, 6, 14] [14] 1

i=6 [4, 5, 6, 7, 9, 10, 11, 12, 13] 5 [10, 11, 12, 14, 15] [14] 1

i=7 [4, 5, 6, 7, 8, 10, 11, 12, 13] 5 [1, 8, 9, 14, 16, 21] [14] 1

i=8 [4, 5, 6, 7, 8, 9, 10, 11, 12] 5 [14, 15, 19, 20] [14] 1

i=9 [4, 5, 6, 7, 8, 9, 10, 12, 13] 5 [14, 18] [14] 1

i=10 [4, 5, 6, 7, 8, 9, 10, 11, 13] 5 [7, 14] [14] 1

Table 5
Damage detection of warehouse with 10% noise added (element 14 damaged).

Set of sensors includes sensors at

nodes

No. of

DLV

PDE Eliminated elements IDS ne

ns=10 [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 5 [3, 8, 9, 13, 14, 16, 18, 20, 21,

22]

[3, 8, 9, 13, 14, 16, 18, 20, 21,

22]

10

k=ns�1=9

i=1 [5, 6, 7, 8, 9, 10, 11, 12, 13] 4 [1, 4, 7, 14, 17] 3, 8, 9, 13, 16, 18, 20, 21,

22

[14] 1

i=2 [4, 5, 6, 7, 8, 9, 11, 12, 13] 4 [5, 7, 14, 19] [14] 1

i=3 [4, 6, 7, 8, 9, 10, 11, 12, 13] 4 [14, 15] [14] 1

i=4 [4, 5, 7, 8, 9, 10, 11, 12, 13] 4 [4, 7, 11, 12, 14, 16, 20] [14] 1

i=5 [4, 5, 6, 8, 9, 10, 11, 12, 13] 4 [6, 14] [14] 1

i=6 [4, 5, 6, 7, 9, 10, 11, 12, 13] 4 [2, 4, 5, 6, 14, 17] [14] 1

i=7 [4, 5, 6, 7, 8, 10, 11, 12, 13] 4 [1, 3, 5, 6, 14, 15, 17] [14] 1

i=8 [4, 5, 6, 7, 8, 9, 10, 11, 12] 4 [4, 5, 7, 14, 15, 17, 19] [14] 1

i=9 [4, 5, 6, 7, 8, 9, 10, 12, 13] 4 [10, 11, 14, 15, 18] [14] 1

i=10 [4, 5, 6, 7, 8, 9, 10, 11, 13] 4 [1, 4, 7, 9, 12, 14, 17] [14] 1
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damaged which matches the actual case. The procedure is summarized in the upper portion of Table 4. Performing the
same procedure for the other 8 combinatorial sets of sensors by dropping 1 sensor record each time, the results in the
lower portion of Table 4 confirm that only element 14 is damaged, reinforcing the criterion of 2 consecutive identical IDS

to stop the iteration in Section 2.2. The same computation is performed for the case of 10 percent noise and the results in
Table 5 support the feasibility of the proposed methodologies. Similar trends are observed for the case where elements
(7, 14) are damaged although the results are not presented here.

It is observed that the number of DLVs computed from the contaminated data is less than that computed from the pure
data. If the noise level goes beyond a certain threshold, no DLV may be computed. The determination of the threshold noise
level is not covered in this paper.
4.2. Experimental verification using truss structure

A 3-D modular truss structure comprising 23 aluminum tubes and 1 pre-tensioned cable is used in this experiment
(see Fig. 8). The geometrical and material properties of the truss members are listed in Table 6 whereas element and node
numbers are plotted in Fig. 9. Damage in the structure is simulated by cutting the pre-tensioned cable member mid-way
through the test. Zero-mean white random load on the truss is generated using a shaker with capacity of 100 lbs (334 N)
and the acceleration responses of the truss are captured by 6 wireless sensors (the senor locations are given in Fig. 8).
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Fig. 8. Experimental set-up.

Table 6
Geometric and material properties of truss members.

Aluminum tubular members Pre-tensioned cable members

Outside diameter (mm) 20.0 4.0

Thickness (mm) 1.0 –

Young’s modulus (N/m2) 6.8�1010 1.6�1011

Mass density (kg/m3) 2690.0 7500.0

Pre-tensioned force (N) – 2000.0

Note: ‘‘–’’ means not applicable.
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Fig. 9. Element and node numbers for experimental truss structure.
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The lost percentages of the acceleration responses captured by the 6 wireless sensors are given in the upper portion of
Table 7, indicating that the loss of data packets are in fact random and not synchronized which agree well with the findings
by Nagayama [21]. With the lost percentage ranging from 19 to 24.5 percent, reconstruction error of the lost portions is
expected to fall between 8 and 9 percent based on Fig. 5. The reconstruction procedure to estimate lost data values
measured by each wireless sensors is applied and the information is summarized in the lower portion of Table 7. It can
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Table 7
Computational details for signal reconstruction at 6 sensor nodes.

Node 1 Node 2 Node 4 Node 6 Node 7 Node 8

Number of lost points 352 380 392 376 304 372

Total number of points 1600 1600 1600 1600 1600 1600

Lost percentage (%) 22.00 23.75 24.50 23.50 19.00 23.25

Number of iterations 12 14 14 11 14 10

Number of frequencies used in the last iteration 479 467 495 367 479 343

Relative error at the last iteration (%) 0.62 0.33 0.55 0.72 0.87 0.83

Note: See Fig. 8 for sensor node locations.
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be observed from Table 7 that the number of iterations required is small, ranging from 10 to 14, and is not proportional to
the lost percentages, as the distribution of the lost packets is another controlling parameter. The results for sensor node 4
are shown in Fig. 10. Fig. 10a gives the signal captured by wireless sensor at sensor node 4 including an insert to show an
example of the lost data. Fig. 10b gives a better indication of the locations of the lost data points based on the ‘‘corrected’’
values. Fig. 10c compares in frequency domain the raw signal against the reconstructed signal which shows no drastic
change in the trend or general characteristics.

From the reconstructed accelerations, 15 segments, each of which contains 109 time steps, can be used to estimate the
structural stiffness coefficients and selected results are plotted in Fig. 11. Of the 6 stiffness coefficients plotted in Fig. 11,
only K88 shows significant reduction since it is contributed directly by the stiffness of the pre-tensioned cable member
which is cut. The cut made mid-way through the experiment and the resulting transient oscillations towards dynamical
equilibrium of the new system is manifested by the varying stiffness coefficients estimated for segments 7–9 (from 7 to
11 s). The identified stiffness coefficients stabilized from segment 10 (11th second) onwards. Based on the identified
stiffness coefficients at segments 1 (first) and 15 (last), the change in the stiffness matrix is calculated and used in the DLV

method to detect damage. Performing SVD on the change in stiffness matrix, a set of 4 DLVs is identified. Applying these
DLVs to the reference structural model as nodal displacement vectors, the NCE of all elements are computed and the set of
PDE comprising elements (1, 8) is identified. The current IDS therefore comprises elements (1, 8) and ne=2.

By omitting readings of the sensor at nodes 9, the readings of the remaining 5 sensors are used to estimate the structural
stiffness matrix for different time segments. Comparing the stiffness matrices identified at the first and the last time
segments, the change in the stiffness matrix is evaluated. Performing SVD on the change in stiffness matrix, a set of 3 DLVs
is obtained and applied onto the reference model as nodal displacement vectors. The set of PDE identified comprises
elements (4, 5, 8, 12, 14). Taking the intersection between the set of PDE and the current IDS which contains elements (1, 8)
gives the new IDS with element 8 as the only member (ne=1). Similarly, by omitting the readings of the sensor at node 1
instead of the sensor at node 9, another set of PDE comprising elements (1, 4, 8, 12) is identified. Intersecting the set of PDE

and the current IDS which contains element 8 only gives element 8 as the new IDS (ne=1). Since the IDS for 2 consecutive
steps are identical, the iteration is terminated, confirming that the actual damage is in element 8. The whole procedure is
summarized in Table 8.

If the raw signals where lost values are padded with zeroes are used instead (that is, without correction), the stiffness
matrix at all 15 time segments can still be deduced. However, if SVD is performed on the difference in stiffness matrix
between the first and the last time segments, no DLV is computed. This confirms the necessity of the reconstruction
procedure to improve the quality of the measured signals before damage identification procedure can be applied to obtain
reliable results.

A comparison between NCS and NCE is made for this example and the results of their magnitudes are plotted in Fig. 12
for the case of measurements using 6 wireless sensors. The 2 damage indicators, NCS and NCE, with the corresponding
thresholds of 0.1 and 0.01 respectively produce the same conclusion that elements (1, 8) are potentially damaged although
the NCE measure appears slightly more sensitive by comparing with the values of the square of NCS.
5. Observations

In solving for the stiffness matrix in Section 2.3, the premise is that unknowns should not be unnecessarily introduced
in large size problems to ensure that reliable results are obtained. Hence it is formulated assuming that the mass matrix is
known and is valid if the structure suffers from mild damage and no mass is added to or removed from the structure.
In such case, the mass matrix can be evaluated from a finite element model of the reference structure and then substituted
into Eq. (11) to form a system of nonlinear equations to solve for the unknown coefficients in the stiffness and damping
matrices. If the structure experiences significant change in the mass matrix, then the mass matrix coefficients also need to
be estimated. The unknowns in Eq. (11) will increase by n(n+1)/2 entries and the number of time steps of acceleration data
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required to solve for the unknown becomes

k1nZ
nðnþ 1Þ

2
� 3þ k1ðn� nsÞ þ 2nþ k1r) k1Z

nð3nþ 7Þ

2ðns� rÞ
ð12aÞ

To apply the DLV method, either displacement or acceleration responses need to be measured. Unless non-contact laser
instrument is available, displacement transducers can only be employed if there is a stiff or fixed reference frame on which
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Table 8
Damage detection of experimental truss structure.

Set of sensors includes sensors at nodes No. of DLV PDE Eliminated elements IDS ne

ns=6 [1, 2, 3, 5, 8, 9] 4 [1,8] [1, 8] 2

k=ns�1=5

i=1 [1, 2, 3, 5, 8] 3 [4, 5, 8, 12, 14] 1 [8] 1

i=2 [2, 3, 5, 8, 9] 3 [1, 4, 8, 12] [8] 1

0 1 2 3 4 5 6 7 8 10 12 13 14 15 16 17 18 19 20 21 22 23 24
10-6

10-5

10-4

10-3

10-2

10-1

100

Element numbers

M
ag

ni
tu

de

Normalized cumulative energy (NCE)
Normalized cumulative stress (NCS)
Square of normalized cumulative stress

Fig. 12. Comparison between NCS and NCE for experimental truss (6 wireless sensors are used).
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they can be mounted. Since the employment of accelerometers does not require fixed reference frame, they are used in this
study to measure acceleration responses. Besides, if the number of measured data points along the time axis (k1) is fixed,
the number of sensors used can be computed following Eq. (12) as

nsZr þ
nðnþ 3Þ

k1
ð12bÞ
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Hence, incorporating the requirement of the intersection scheme in Section 2.2, the minimal number of sensors used
should be the maximum value between 3 and [r+n(n+3)/k1]. Theoretically, the available sensors should be positioned at
critical locations so that maximum information with regards to the safety of the structure can be retrieved. Optimal sensor
placement which includes measurement locations and directions has been addressed by other researchers [33–36] and is
also relevant to the DLV method.

Based on experience with the examples, it is noted that the algorithm can work well for the case of mild degradation in
structural parameters with time (less than 0.1 percent reduction within k1 time steps). The algorithm to compute stiffness
matrix from response accelerations is suitable for the online damage detection applications because structural stiffness
matrix can be evaluated whenever a set of k1 measured time steps is available. Perturbations near the time of occurrence of
damage (for example, around 7–11 s in the second example) can also be captured, providing additional information.

Using shaker to excite structure dynamically may not be suitable for some types of structures such as bridges, offshore
platforms. For cases where shaker is not suitable, other natural modes of excitation such as moving vehicles or ambient
sources may need to be considered [37].

6. Conclusions

The DLV method which uses the normalized cumulative energy as damage indicator is shown to be applicable for truss
and frame structures, the latter comprising members in multi-stress state. To filter out the actual damaged elements from a
larger identified potential damaged set, an intersection scheme with the suggested thresholds is proposed and illustrated
to be feasible. The importance of using quality signals is demonstrated, where actual signals from wireless sensors, with
and without correction, are used with the DLV methodology. Numerical and experimental results presented also support
the efficiency of the reconstruction algorithm of signals from wireless sensors with up to 25 percent data loss and its
suitability to be integrated with the DLV method.
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